Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo.

نویسندگان

  • Lisa D Wilsbacher
  • Shin Yamazaki
  • Erik D Herzog
  • Eun-Joo Song
  • Laurel A Radcliffe
  • Michikazu Abe
  • Gene Block
  • Edward Spitznagel
  • Michael Menaker
  • Joseph S Takahashi
چکیده

A conserved transcription-translation negative feedback loop forms the molecular basis of the circadian oscillator in animals. Molecular interactions within this loop have been relatively well characterized in vitro and in cell culture; however, in vivo approaches are required to assess the functional significance of these interactions. Here, regulation of circadian gene expression was studied in vivo by using transgenic reporter mouse lines in which 6.75 kb of the mouse Period1 (mPer1) promoter drives luciferase (luc) expression. Six mPer1-luc transgenic lines were created, and all lines express a daily rhythm of luc mRNA in the suprachiasmatic nuclei (SCN). Each mPer1-luc line also sustains a long-term circadian rhythm of luminescence in SCN slice culture. A 6-h light pulse administered during the early subjective night rapidly induces luc mRNA expression in the SCN; however, high luc mRNA levels are sustained, whereas endogenous mPer1 mRNA levels return to baseline, suggesting that posttranscriptional events mediate the down-regulation of mPer1 after exposure to light. This approach demonstrates that the 6.75-kb mPer1 promoter fragment is sufficient to confer both circadian and photic regulation in vivo and reveals a potential posttranscriptional regulatory mechanism within the mammalian circadian oscillator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures

BACKGROUND The AP-1 family of transcription factors has been implicated in the control of the expression of many genes in response to environmental signals. Previous studies have provided temporal profiles for c-fos expression by taking measurements from many animals at several points in time, but these studies provide limited information about dynamic changes in expression. Here, we have devis...

متن کامل

Brief Communication Circadian Rhythm Generation and Entrainment in Astrocytes

In mammals, the master circadian pacemaker is considered the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of a heterogeneous population of neurons and relatively understudied glia. We investigated whether glia, like neurons, rhythmically express circadian genes. We generated pure cultures of cortical astrocytes from Period2::luciferase (Per2::luc) knock-in mice and Period...

متن کامل

Measurement of luciferase rhythms.

Firefly luciferase (LUC) is a sensitive and versatile reporter for the analysis of gene expression. Transgenic plants carrying CLOCK GENE promoter:LUC fusions can be assayed with high temporal resolution. LUC measurement is sensitive, noninvasive, and nondestructive and can be readily automated, greatly facilitating genetic studies. For these reasons, LUC fusion analysis is a mainstay in the st...

متن کامل

Imaging gene expression in live transgenic mice after providing luciferin in drinking water.

Mice expressing the firefly luciferase gene luc under the control of various gene promoters are used to image long-term changes in tumor growth, infection, development, and circadian rhythms. This novel approach enables ongoing regulation of gene expression to be visualized through repeated imaging of luciferase bioluminescence. Typically, luciferin, the luciferase substrate, is injected into m...

متن کامل

Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein.

Activation of the MAPK/ERK signaling cascade in the suprachiasmatic nucleus (SCN) is a key event that couples light to circadian clock entrainment. However, we do not fully understand the mechanisms that shape the properties of MAPK/ERK signaling in the SCN, and how these mechanisms may influence overt circadian rhythms. Here we show that Raf kinase inhibitor protein (RKIP) controls the kinetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2002